

Prepared by Noni MacDonald Dalhousie University, IWK Health Centre, Halifax , Canada

1

Following this lecture, the participants will be able to

- 1. List common pitfalls in selecting the clinical *research question*
- 2. Describe *method* pitfalls
- 3. List common *ethics review* problems
- 4. Outline *budget* research pitfalls
- 5. List areas where *time* is the constraint in research
- 6. Discuss the factors that lead to *misleading or erroneous research conclusions* and prevention steps

Problems with the Research Question...

FINER - Feasibility

Can this question/ project be done? Subjects

- –How many?
- -From where?
- -How will you recruit them?
- How will you collect and analyze the outcome data?***
 - -Has it been done before and can you use the same tools?
 - Expertise?
 - -Money?
 - –Equipment?

*** MR problems

FINER – Feasibility cont'd

 Is your question tight enough or are there too many secondary questions?

The Question

How long will it take?

"PICOT"

If checking on an intervention or making a comparison:

- P = PATIENTS or POPULATION
- I =INTERVENTION
- C=COMPARISON
- O=OUTCOME
- T=TIME

PICOT may help you think your question through

FINER - Interesting?

- Do you really care about this?
- Will you still care about it in a year?
- Does your team care about this? Your mentor/coach?
- Would your target audience care about the answer(s) to this question? (community, health leaders, journal readers, etc)

Nothing great is ever achieved without enthusiasm. Emerson

FINER – Novel?

- Has this been addressed before?
- If yes, how would this differ?
- Would your project provide any new information?
- Would your project confirm/refute earlier findings?

FINER - Ethical Issues

- Is there a sound scientific research design?
- Is the risk/benefit balanced?
- Is there a plan for safety monitoring if this is an intervention?
- Do the researchers have a conflict of interest?

STAY TUNED FOR MORE ON ETHICS later in the workshop

FINER – Relevance

- Will it be of interest to anyone else?
- Will it be important to the community/population you are studying?
 - Beyond this community?
- Will the outcome potentially change health practices/training and/or policies?

2. Problems with the Methods....

"A researchable question is an uncertainty about a problem that can be challenged, examined, and analyzed to provide useful information"

Methods must fit the question

2. The Methods Most common error

Methods not match question

	Quantitative	Qualitative
Research Aims	Test hypotheses and establish cause and effect	Understand social phenomena in their natural settings
Study Design	Formal, objective, and systematic	Observational, holistic, and flexible
Sampling	Unbiased cross-section representative of the study population	Strategically <i>selected</i> to collect the most meaningful data
Methods	Measurement yielding <i>numeric data</i>	Interviews and observations yielding textual data
Analysis Micro Research	Emphasis on statistical techniques to determine <i>significance</i>	Identify themes that emerge from the data

Experimental Design

Investigators

same paradigm, *different design, different results*

marcocg.com/.../PAIN_Logo_final.png

e.g. pain assessment patient survey vs healthcare worker observation

RCT vs cohort study vs case series Carefully plan research design

2. The Methods- cont'd

No Patients/no patience

Barriers & obstacles: timing (season), hiring

Changes during studyprotocol, personnel, pop, techniques

Data missing or not accurately recorded

Ordinality of Data

Ordinality: a number denoting relative position in a sequence, such as *first, second, third*.

Data: **first order**- directly from lab machine or weight scale print out

second order- HCW writes down these numbers in chart

third order- researcher extracts these numbers from chart

Errors increase as ordinality increases- try for first order data if possible. Minimize # times human records data

Problems with the Ethics Review....

3. Ethics Review Research design issues

question population randomization/controls methods- validation benefits vs risks/

safety and safety monitoring technical: qualitative, quantitative analysis COI

Consent issues Data integrity, management, storage Outcomes/feedback to participants

Problems with the Budget....

4a. Budget Preparation

- Budget not add up!
- Over budget allowed by granting agency
 - Vague or little justification for costs
 - Costs not allowed by granting agency
- Not realistic; not related to grant content

4b. Budget Application

"Leaking" money

Unanticipated costs & inflation

Timing of budget

Time/paperwork spent on budgeting

Audits- "paper" trail

Problems with Time....

5. Time Time to write grant

Time to get Ethics approval

Time to recruit

Time to manage grant

Time to collect data

Time to analyze and write up

6. Problems with misleading or erroneous results or conclusions

Investigator / Experimenter

- maybe one and same
- very different tasks

Investigator: design, analyze, interpret, report

Experimenter: does the study

6A. Misleading Results or Conclusions

Investigator Effects

- 1. Paradigm
- 2. Experimental Design
- 3. Loose Procedure
- 4. Data Analysis
- 5. Fudging

Theodore Barber. *pirate.shu.edu/~hovancjo/exp_read/barber.htm*

1.Paradigm Problem

Investigator:

Experienced problem solvers Work well within paradigm Fail to see "events' not fit assumptions in paradigm

H pylori and ulcers- Marshall and Warren *Lancet* 1984;1: 1311-1315.

Mortality after fluid bolus in African children with severe infection- Maitland et al N Engl J Med 2011 364(26):2483-95

Test multiple hypotheses not only one preferred

Study design	Common errors	
Randomized trial	lack of blinding lack of concealed randomization exclusion of dropouts type II (beta) errors – insufficient sample size type I (alpha) error – overuse of statistical tests and multiple outcomes	
Prospective cohort (with comparison group) lack of adjustment for differences in characteristics between and comparison groups type II (beta) errors insufferences of statistical tests and multiple		
rospective case serieslack c o dependent or blinded assessment of outcomeswithout comparison group)Lack c o dependent or blinded assessment of outcomes		
Case-control study	recall bias problems in ascertainment of cases and controls type II (beta) errors – insufficient sample size type I (alpha) error – overuse of statistical tests and multiple outcomes	
Retrospective case series (with comparison group)	recall bias type II (beta) errors – insufficent sample size type I (alpha) error – overuse of statistical tests and multiple outcomes incomplete reporting in patient charts	
Retrospective case series (without comparison group)	incomplete reporting in patient charts lack of follow-up recall bias Zlowodzki M et al. Med Princ Pract 2005; 1-8.	

3.Loose Procedure

Resear

Experimental protocol -imprecise Survey - no formal script - no systematic prompts - none or limited documentation **Intervention** – not verified actually occurred

Take care all procedures developed in advance and clear - do test run Micro 30

4. Data Analysis

Not pre planned

Incidental unrelated data report this only

Re-analyze until find significance

Fail to report negative data –omit selection bias

Strength of association not given – only signif

Get professional help, plan in advance

5. "Fudging"

www.surgisphere.com/.../E01/Figure-1.jpg

Investigator intentionally reports results that are not actually obtained....

6B. Misleading Results or Conclusions cont'd Experimenter Effects

- 6. Personal Attributes
- 7. Failure to Follow the Procedure
- 8. Experimenter Mis-recording
- 9. Fudging
- 10. Unintentional Expectancy

-looking for the effect

Select, train and supervise experimenter well

Additional Problems: Authorship

For grant

papers

abstracts

Discuss in What Editors are Looking for

Research Preparations: Be Wise

Time spent in preparation reaps big benefits in the quality and usefulness of the research results

Next Steps- MR Teams

What are the " golden rules" for good MicroResearch team function?

10 Rules for Good MR Team Work

- MR Team proposal has the highest priority Commit to the MR team selected project over personal agendas is essential.
- 2. Be present, contribute and listen to the contributions of others there is no inequality in a MR team. All must be welcomed to participate; all need to be punctual and respectful

3. Decisions are based on what's right – not who's right. Position, status, seniority or authority are not reasons for a MR team to make a decision based on any individual's recommendations.

Adapted form Suzanne Murphy, Work Systems Affiliates. http://www.wsaintl.com/210-top-10-rules-for-teams

10 Rules cont'd

- 4. Contribute with energy, homework and hard work and flexibility – bring your time, skills and an open mind to the table.
- 5. Share the MR proposal development work load- and complete your MR team tasks in timely fashion
- 6. Proposal decisions are based on MR teams finding of facts and analysis
 – not on opinions

10 Rules cont'd

- 7. Don't let perfection be the enemy of good - the 80-20 rule prevails- An 80 percent solution is better than the continued search for the "perfect" proposal without any action.
- 8. Consensus prevails do not get stuck; make decisions
- **9. Choose a chair for the MR Team.** Does not mean will be Proposal Leader- but leads Team now

10.Make an email list serve to help with communication

Team Work – Day 2

- 1.Choose a Chair for the MR Team; make an email list for communications
- 2. Each team member presents their burning research question
- 3. MR team reviews each question through the FINER lens
- Discuss and choose the question MR Team will develop and the rational for why this question
- 5. Start to refine question –think about methods could use as refine question

Team Work – Day 2 cont'd

Prepare short PPT

- 1. List team #i.e. MR Team 1, members of team, their profession
- 2. List each burning question reviewed by the team (not name who suggested it)
- List the selected question (and why met FINER criteria- this can be done verbally not on slide)
- 4. Select a MR Team member to present this PPT on Day 3 i.e. tomorrow.

